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Puzzles of Naturalness
Some of the most fascinating open problems in modern physics
are all problems of naturalness:

• The cosmological constant problem

• The Higgs mass hierarchy problem

• The linear resistivity of strange metals, the regime above Tc
in high-Tc superconductors [Bednorz&Müller ’86; Polchinski ’92]

In addition, the first two •s – together with the recent
experimental facts – suggest that we may live in a strangely
simple Universe . . .

Naturalness is again in the forefront
(as are its possible alternatives: landscape? . . .?)
If we are to save naturalness, we need new surprises!
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What is Naturalness?
Technical Naturalness: ’t Hooft (1979)

“The concept of causality requires that macroscopic phenomena
follow from microscopic equations.”

“The following dogma should be followed: At any energy scale
µ, a physical parameter or a set of physical parameters αi(µ) is
allowed to be very small only if the replacement αi(µ) = 0
would increase the symmetry of the system.”

Example: Massive λφ4 in 3 + 1 dimensions.

λ ∼ ε, m2 ∼ µ2ε, µ ∼ m/
√
λ.

Symmetry: The constant shift φ→ φ+ a.

“Pursuing naturalness beyond 1000 GeV will require theories
that are immensely complex compared with some of the grand
unified schemes.”
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Gravity without Relativity
(a.k.a. gravity with anisotropic scaling, or Hǒrava-Lifshitz gravity)

Field theories with anisotropic scaling:

xi → λxi, t→ λzt.

z: dynamical critical exponent – characteristic of RG fixed point.

Many interesting examples: z = 1, 2, . . . , n, . . .
fractions: 3/2 (KPZ surface growth in D = 1), . . ., 1/n, . . .
families with z varying continuously . . .

Condensed matter, dynamical critical phenomena, quantum
critical systems, . . .

. . . and now gravity as well, with propagating gravitons,
formulated as a quantum field theory of the metric.
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Spontaneous Symmetry Breaking

Global internal symmetry breaking leads to Nambu-Goldstone
modes. Phenomenon is remarkably universal, across many fields
dealing with many-body systems.

But how many NG modes, and what is their low-energy
dispersion relation?

• Relativistic case: All questions answered by Goldstone’s
theorem: One NG per broken generator, gapless=massless,
z = 1 dispersion ω = k.

• Nonrelativistic case: Classify NG modes by classifying their
low-energy effective QFTs [Murayama&Watanabe, ’12,’13].

Let’s focus, for definiteness, on systems with Lifshitz
symmetries. Write down possible EFT’s for NG modes πI.
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Nonrelativistic Goldstone Theorem?

Assume Lifshitz symmetry. Then [Murayama&Watanabe]:
the EFTs are

S =

∫
dt dDx

(
ΩI(π)π̇I + gIJ π̇

Iπ̇I − hIJ∂iπI∂iπ
J + . . .

)
.

Hence, this yields two types of NG modes:

• Type A, z = 1 dispersion ω = ck (those unpaired by Ω, with
no T-reversal breaking). As in the relativistic case, one Type A
NG mode per one broken generator.

• Type B, dispersion ω ∼ k2. Each associated with a pair of
broken symmetry generators, as paired by Ω. Minimal
T-reversal symmetry is broken.

Anything else would be fine tuning . . . or would it?
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Is there a gap in the argument? Consider z = 2 theory:

Seff =

∫
dt dDx

(
gIJ π̇

Iπ̇J − g̃IJ∆πI∆πJ−c2ĝIJ∂iπI∂jπ
J
)
.

If the relevant deformation is not generated, we can have new
NG modes, with z = 2, associated with just one broken
symmetry and not a pair, and with no time reversal breaking.

Example: Start with z = 2 O(N) LSM in 3 + 1 dimensions,

Seff =

∫
dt d3x

(
φ̇ · φ̇−∆φ ·∆φ− g(φ2)2∂iφ∂iφ− . . .− λ5(φ2)5

− . . .− c2∂iφ · ∂iφ− . . .− λ(φ2)2 +m4φ2
)
.

Consider this theory in the broken phase.
Keep it interacting, but make it superrenormalizable, like this:
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Is there a gap in the argument? Consider z = 2 theory:

Seff =

∫
dt dDx

(
gIJ π̇

Iπ̇J − g̃IJ∆πI∆πJ−c2ĝIJ∂iπI∂jπ
J
)
.

If the relevant deformation is not generated, we can have new
NG modes, with z = 2, associated with just one broken
symmetry and not a pair, and with no time reversal breaking.

Example: Start with z = 2 O(N) LSM in 3 + 1 dimensions,

Seff =

∫
dt d3x

(
φ̇ · φ̇−∆φ ·∆φ− g(φ2)2∂iφ∂iφ− . . .− λ5(φ2)5

− . . .− c2∂iφ · ∂iφ− . . .− λ(φ2)2 +m4φ2
)
.

The effective speed counterterm for the NG modes is not
generated, quantum correction is (finite and) small.
(To maintain control at low energies, can take large N .)
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Naturalness of Slow NG Modes

How small is the quantum correction δc2?

Consider the LSM, for simplicity in the unbroken phase. The
first quantum correction to δc2 = 0 comes at two loops, from

∼
(
λ2

m4

)
|k|2 + . . . ,

and it is finite. What does this mean?

Assume a hidden symmetry, broken by ε at scale µ:

λ ∼ µ3ε, m4 ∼ µ4ε, c2 ∼ µ2ε.

This implies µ ∼ m/λ and c2 ∼ λ2/m4, just as we found by the
explicit calculation!
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Polynomial Shift Symmetry

So, there must be a new symmetry at play:

the “quadratic shift” symmetry

πI(t, xi)→ πI(t, xi) + aIijx
ixj + aIjx

j + a0.

Note it depends only on spatial coordinates, not on time.

This construction naturally iterates:

The higher “polynomial shift symmetry,”

πI(t, xi)→ πI(t, xi) + aIj1j2...j2z−2
xj1xj2 . . . xj2z−2 + . . .

protects the ω ∼ kz low-energy dispersion for Type A modes
(and the ω ∼ k2z low-energy dispersion for Type B modes).
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Refining the Classification of
Nonrelativistic NG Modes

Refined classification of technically natural NG modes with
Lifshitz spacetime symmetries:

• Type A tower of multicritical NG modes with z = 1, 2, . . .,
until one hits against the multicritical analog of the Coleman
Mermin-Wagner theorem at z = D;

• Type B tower of multicritical NG modes with z = 2, 4, . . .
(and no analog of the MCW theorem).

These IR fixed points describe the free limit of multicritical NG
modes, and imply low-energy theorems for scattering etc.

Generic interactions break the polynomial shift symmetry to the
constant shift. But: Corrections are controllably small, if
couplings are small.
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Coleman-Mermin-Wagner Theorem &
Cascading Multicriticality

Recall relativistic CMW theorem: In 1 + 1 dimensions, SSB
which would require a NG mode φ can never happen, since φ
does not exist: 〈φ(0)φ(x)〉 ∼ log(µIRx).

Multicritical analog of CMW theorem: Type A D = z NG
modes do not exist as quantum objects at the fixed point.

Take say z = 3 in 3 + 1 dimensions, below some scale µ. Naive
CMW theorem: no symmetry breaking, no condensate?

Novelty: Cascading hierarchical multicriticality of NG modes.

At some physical crossover scale µIR � µ, turn on a z < 3
deformation. The theory self-regulates in IR, with
ω ∼ |k|3 + . . . µ2

IR|k|. And SSB is possible, after all!

Lab implications in condensed matter? Cosmology?
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Field Theories with Polynomial Shift
Symmetries

So, we found examples where a new symmetry

φ(t, xi)→ φ(t, xi) + aj1j2...jPx
j1xj2 . . . xjP + . . .

protects the smallness of leading terms in the dispersion
relation, and protects hierarchies.

In the examples shown, the symmetry is broken by interactions.

Now we can turn this around, and ask for the classification of
scalar theories in which the polynomial shift symmetry is exact.

This is a very cute mathematical problem!

The simplest case of linear shift is related to the Galileon.
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Polynomial Shift Invariants

It is natural to organize the invariants by their dimension at the
free RG fixed point.

Task: Classify all terms in the Lagrangian containing n fields
and ∆ ≡ 2m derivatives, invariant under the degree-P shift
symmetry up to a total derivative:

δPL = ∂iLi.

This is essentially a cohomological problem. It defines a vector
space of invariants HP,n,∆,D.

How to solve it?

use Graph Theory!
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Graph Theory

Represent each ∂i1 . . . φ . . . ∂i2mφ term by a graph:

(1) Each field φ is represented by a vertex (•);

(2) Each pair ∂i[. . .]∂i is represented by a link:

Consider only “loopless graphs” – classification up to
integration by parts.

To formulate δPL = ∂iLi, two more vertices needed:

(3) each aj1...jPx
j1 . . . xjP is represented by “⊗”;

(4) The ∂i on the RHS is represented by a “free end”: ?.
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Examples: Galileons and Beyond

Start with P = 1, linear shift symmetry.

Problem of (minimal) n-point 1-invariants is equivalent to
Galileons.

The minimal value for ∆ is ∆ = n− 1, the invariant is unique:

Ln ∝ T i1...in−1j1...jn−1 ∂i1φ∂j1φ∂i2j2φ . . . ∂in−1jn−1φ,

where

T i1...in−1j1...jn−1 = εi1...in−1kn...kD εj1...jn−1
kn...kD.

These are known. Yet, the graph-theory representation reveals
new patterns in these 1-invariants.
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Examples: Galileons and Beyond

The n-point 1-invariants are:

L1 = φ = ,

L2 = ∂iφ∂iφ = ,

L3 = 3∂iφ∂jφ∂i∂jφ = 3 ,

L4 = 12[i][ij]jk][k] + 4[i][j][k][ijk] = 12 + 4 ,

L5 = 60[i][ij][jk][kl][l] + 60[i][ij][jkl][k][l] + 5[i][j][k][l][ijkl]

= 60 + 60 + 5 .

In graph theory, these unique 1-invariants correspond to
the sum over all spanning trees, with equal weight!
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Examples: Galileons and Beyond

For example, the 4-point 1-invariant L4 is:
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P > 0 Invariants: Superposition of Trees

Example: The most relevant quintic-shift 4-pt invariant is
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Back to Naturalness in Physics
In high-Tc superconductors, the phase above Tc exhibits
“unnatural” properties:

Resistivity ρ(T ) ∼ T over several orders of magnitude in
temperature:

T

T( )ρ

Use EFT: What gives ρ ∼ T? Nothing!

• Electron-phonon interactions (the main mechanism for pairing
in BCS): ρ ∼ T 5

• Electron-electron interactions: ρ ∼ T 2

• Electron-impurities: ρ ∼ const
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A Simple Model of Strange Metals
Phonons are NG modes of SSB of space translations.

Consider Debye model with multicritical phonons: ω = ζ|k|z.
Phonon spectrum cut off at the Debye frequency ω̃D.
Lower critical dimension: D = z. Density of states:

)ρ(ω

ω

ω
~

D<<ωD

ω
~

D>>ωD

ρ(ω)

ω

DDω

~
ωD=

ω

ωD

Couple to the Fermi surface, minimally:

g

∫
dt dDxQΨ†Ψ ≡ g

∫
dt dDx ∂iQiΨ

†Ψ.

This coupling breaks polynomial shift, generates relevant
deformations, and a natural pairing mechanism.
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Resistivity in Strange Metals

Transport: Use Bloch-Boltzmann theory. In metals, this gives
the Bloch-Grüneisen formula (with τ(k) the relaxation time):

ρ ∼ 1

τ(εF)
∼
∫ εF/T

0

|gk|2n(k)k2 kdk

with n(k) =
1

exp(ωk/T )− 1
the phonon distribution function,

and gk = g
k
√
ωk

the electron-phonon vertex.

3 + 1 dimensions, z = 1 phonons: ρ ∼ T 5.
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Resistivity in Strange Metals

Transport: Use Bloch-Boltzmann theory. In metals, this gives
the Bloch-Grüneisen formula (with τ(k) the relaxation time):

ρ ∼ 1

τ(εF)
∼
∫ εF/T

0

|gk|2n(k)k2 kdk

with n(k) =
1

exp(ωk/T )− 1
the phonon distribution function,

and gk = g
k
√
ωk

the electron-phonon vertex.

3 + 1 dimensions, general z phonons: ρ ∼ T (6−z)/z.
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Resistivity in Strange Metals

Transport: Use Bloch-Boltzmann theory. In metals, this gives
the Bloch-Grüneisen formula (with τ(k) the relaxation time):

ρ ∼ 1

τ(εF)
∼
∫ εF/T

0

|gk|2n(k)k2 kdk

with n(k) =
1

exp(ωk/T )− 1
the phonon distribution function,

and gk = g
k
√
ωk

the electron-phonon vertex.

D + 1 dimensions, general z phonons: ρ ∼ T (3+D−z)/z.
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Outlook

Naturalness can still bring surprises, especially in non-relativistic
theories where our hep-th intuition is often misleading

Applications to condensed matter (high-Tc superconductivity?)

Our results touch on hep-th, gr-qc, cond-mat, math-ph, hep-ph
. . .

Keeping the original motivation in mind:

The two leading Naturalness puzzles are in astro-ph and hep-ph
. . . can some new, perhaps yet undiscovered surprises about
Naturalness help resolve them?


